- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bagavathi, Arunkumar (2)
-
Aakur, Sathyanarayanan N. (1)
-
Akbas, Esra (1)
-
Hossain, Tanvir (1)
-
Saifuddin, Khaled Mohammed (1)
-
Tanvir, Farhan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Aakur, Sathyanarayanan N.; Bagavathi, Arunkumar (, International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications)null (Ed.)Egocentric perception has grown rapidly with the advent of immersive computing devices. Human gaze prediction is an important problem in analyzing egocentric videos and has primarily been tackled through either saliency-based modeling or highly supervised learning. We quantitatively analyze the generalization capabilities of supervised, deep learning models on the egocentric gaze prediction task on unseen, out-of-domain data. We find that their performance is highly dependent on the training data and is restricted to the domains specified in the training annotations. In this work, we tackle the problem of jointly predicting human gaze points and temporal segmentation of egocentric videos without using any training data. We introduce an unsupervised computational model that draws inspiration from cognitive psychology models of event perception. We use Grenander's pattern theory formalism to represent spatial-temporal features and model surprise as a mechanism to predict gaze fixation points. Extensive evaluation on two publicly available datasets - GTEA and GTEA+ datasets-shows that the proposed model can significantly outperform all unsupervised baselines and some supervised gaze prediction baselines. Finally, we show that the model can also temporally segment egocentric videos with a performance comparable to more complex, fully supervised deep learning baselines.more » « less
An official website of the United States government

Full Text Available